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Extinctions in the random replicator model
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The statistical properties of an ecosystem composed of species interacting via pairwise, random interactions
and deterministic, concentration limiting self-interactions are studied analytically with tools of equilibrium
statistical mechanics of disordered systems. Emphasis is given to the effects of externally induced extinction of
a fixed fraction of species at the outset of the evolutionary process. The manner the ecosystem copes with the
initial extinction event depends on the degree of competition among the species as well as on the strength of
that event. For instance, in the regime of high competition the ecosystem diversity, given by the fraction of
surviving species, is practically insensitive to the strength of the initial extinction provided it is not too large,
while in the less competitive regime the diversity decreases linearly with the size of the event. In the case of
large extinction events we find that no further biotic extinctions take place and, furthermore, that rare species
become very unlikely to be found in the ecosystem at equilibrium. In addition, we show that the reciprocal of
the Edwards-Anderson order parameter yields a good measure of the diversity of the model ecosystem.
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I. INTRODUCTION

Extinction seems to be the final outcome of the evolut
of species. In fact, as species survive about 10 million ye
in the average, nearly all species that have ever existed
extinct, and only a very small fraction of them have left th
impressions in the fossil record@1,2#. The causes of mas
extinction events is currently a matter of dispute, as there
two main types of explanations@3#. The more traditional one
asserts that extinction is caused by external stresses suc
for instance, major climate changes and asteroids impa
This point of view is supported by some evidence, such
the unusual quantity of iridium and other noble metals in
rocks that marked the boundary between the Cretaceous
Tertiary periods, when the era of the dinosaurs was repla
by the era of the mammals@4#. Since iridium is more com-
mon in asteroids than in the Earth’s crust, this finding can
viewed as evidence of an asteroid impact. An alterna
explanation asserts that extinctions are caused by interac
between species in the ecosystems. In particular, Paine@5#
showed that species richness can sometimes be increas
a predator-mediated coexistence, and the removal of pr
tors can lead to additional species extinctions. Some re
studies indicated that food webs with many species or h
connectivity are more likely to lose species as a conseque
of the extinction of a single species when compared w
more simple food webs@6,7#. Although this kind of argu-
ment seems well suited to explain so-called background
tinctions, it certainly needs some new ingredients to exp
mass extinctions as well. In fact, the missing ingredi
seems to be the self-organized criticality concept@8#, which
in this context is best illustrated by the popular Bak-Snep
model @9#. According to this model, the fitness of each sp
cies is affected by the other species to which it is coupled
the ecosystem, so that large events in the evolutionary
tory may be thought of as large coevolutionary avalanc
caused by the intrinsic dynamics of the model. In this mod
the distribution of the extinction sizes follows a power la
which is a valid candidate for fitting to the experimental da
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Although we recognize that evolution and hence extin
tion are, as pictured by the models mentioned above, es
tially dynamical phenomena, in this work we study the
phenomena within the equilibrium statistical mechan
framework of the random replicator model for species coe
lution @10–13#. Deterministic replicator models are com
monly used to describe the evolution of self-reproducing
tities in a variety of fields such as game theory, prebio
evolution, and sociobiology@14,15#. The random replicator
model introduced by Diederich and Opper@10# attempted to
model the uncertainties and the overwhelming complexity
the interspecies interactions in biological ecosystems, by
suming that those interactions are random. However, it w
also assumed that the dynamics is such that a fitness f
tional ~Lyapunov function! is maximized so that the only
stationary states are fixed points. In fact, the existence
such a functional leads to a replicator equation with symm
ric interspecies interactions@15#, which is a severe assump
tion from the biological standpoint. However, it allows th
full use of the tools of equilibrium statistical mechanics
study the average properties of the equilibrium states of
kind of disordered ecosystems analytically.

An interesting result of the random replicator model
that in the equilibrium state a fraction of the species is
tinct @10#. The mechanism of extinction is clearly outcomp
tition and, in the absence of any cooperation pressure, on
pair of species with the largest reinforcing interactions w
thrive. In this paper we study the effects of random elimin
tion of a fixed fraction of the species at the outset of t
evolutionary process, placing emphasis on the distribution
the remaining species concentrations in the equilibrium st
There are several interesting issues that can be address
this framework. For instance, what is the equilibrium situ
tion when the fraction of species eliminated at the beginn
is already larger than the fraction that would be extinct na
rally due to outcompetition? Furthermore, how does the e
system cope with large initial extinction events? In this pa
we give clearcut analytical answers to these questions w
©2001 The American Physical Society11-1
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are partly corroborated by numerical simulations of t
model ecosystem.

The remainder of the paper is organized as follows.
Sec. II we introduce the model, and discuss the ecolog
interpretation of the control parameters. The equilibriu
properties of the model are derived within the replic
symmetric framework in Sec. III, and the use of the recip
cal of the Edwards-Anderson order parameter as a mea
for the diversity of the ecosystem is suggested. In Sec. IV
calculate the cumulative distribution of the concentrations
a given species, thus allowing the explicit calculation of t
ecosystem diversity as the fraction of surviving species
equilibrium. Finally, in Sec. V we present some concludi
remarks.

II. MODEL

We consider an infinite population~ecosystem! composed
of individuals belonging toN different species, whose fitnes
Fi ( i 51, . . . ,N) are the derivativesFi5]F/]xi of the fit-
ness functionalF defined as

2F5H~x!5u(
i

bixi
21(

i , j
Ji j bixibjxj , ~1!

where xiP@0,̀ ) is the fraction of speciesi, and bi is a
quenched random variable that takes the values 0 and 1
probabilitiesa and 12a, respectively. HenceNa randomly
chosen species are eliminated at the outset in the ave
and so henceforth we will refer toaP@0,1# as the dilution
parameter. An effective competition among the specie
enforced by requiring that the concentrations of the surviv
species satisfy the constraint

(
i 51

N

bixi5Q0N, ~2!

whereQ0 is an arbitrary positive constant which gives t
scale of the concentrationsxi . The coupling strengthsJi j
between speciesi and j are statistically independen
quenched random variables with a Gaussian distribution

P~Ji j !5A N

2p
expF2

~Ji j !
2N

2 G , ~3!

so thatJi j ,0 corresponds to pairs of cooperating spec
while Ji j .0 to pairs of competing species. As far as t
ground-state properties ofH are concerned, the actual valu
of the variance of theJi j is irrelevant, provided it will vanish
as 1/N for large N, and so we have fixed it to 1/N without
loss of generality. In doing so, we are implicitly assumi
thatH is a dimensionless effective Hamiltonian, and so is
self-interaction parameteru>0. This parameter acts as a gl
bal cooperation pressure, limiting the growth of any sin
species, and it is crucial to guarantee the existence of a
trivial thermodynamic limit,N→`. In fact, for largeu the
minimum of H corresponds to a homogeneous ecosys
where the surviving species have concentrationsxi /Q0
51/(12a); i . The positive self-interactions mean that ind
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viduals of a same species compete against themselves, w
is quite reasonable as they certainly share the same reso
~ecological niche!.

The time evolution of the species concentrations is giv
by the replicator equation

dxi

dt
52xiF ]H~x!

]xi
2

1

N (
k

xk

]H~x!

]xk
G; i , ~4!

which minimizesH(x) while keeping the term( ibixi con-
stant during the evolution. Hence the fixed points of th
equation are the minima ofH(x), and in the following we
use the replica formalism to study the statistical properties
these minima analytically.

III. REPLICA APPROACH

Following the standard prescription of performin
quenched averages on extensive quantities only@16#, we de-
fine the average free-energy densityf as

2b f 5 lim
N→`

1

N
^ ln Z&, ~5!

where

Z5E
0

`

)
i

dxidS Q0N2(
i

bixi D S QN2(
i

xi~12bi ! D
3e2bH(x) ~6!

is the partition function andb51/T is the inverse tempera
ture. Taking the limitT→0 in Eq. ~6! ensures that only the
states that minimizeH(x) will contribute to Z. We impose
the additional constraint

(
i

xi~12bi !5QN ~7!

to avoid divergences when carrying out the integrals overxi .
Here^•••& stands for the average over the coupling streng
Ji j as well as over the auxiliary variablesbi . As usual, the
evaluation of the quenched average in Eq.~5! can be carried
out through the replica method: using the identity

^ ln Z&5 lim
n→0

1

n
ln^Zn&, ~8!

we first calculatê Zn& for integer n, i.e., Zn5)r51
n Zr, and

then analytically continue ton50. The final result is
1-2
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EXTINCTIONS IN THE RANDOM REPLICATOR MODEL PHYSICAL REVIEW E64 051911
2b f 5 lim
n→0

extr
1

n H(
r

p̂rpr2
bu

2 (
r

pr1
b2

4 (
r

~pr!2

1 (
r,d

q̂rdqrd1(
r

QQ̂r1
b2

2 (
r,d

~qrd!2

1(
r

Q0R̂r1 (
b50

1

Pb ln G0~b,p̂r,q̂rd,R̂r,Q̂r!J ,

~9!

whereP05a, P1512a, and

G05E
0

`

)
r

dxr expH 2b(
r

p̂r~xr!22b(
r,d

q̂rdxrxd

2b(
r

R̂rxr2~12b!(
r

Q̂rxrJ . ~10!

We note that while we have calculated the average over
couplings Ji j explicitly, we have used the self-averagin
property (1/N)( i lnG0(bi)5(bPb ln G0(b) to eliminate the
site dependence of thebi variables. The relevant physica
order parameters are

qrd5
1

N (
i

Š^xi
rxi

d&T‹, r,d, ~11!

pr5
1

N (
i

Š^~xi
r!2&T‹, ~12!

which measure the overlap between a pair of different eq
librium statesxr and xd, and the overlap of an equilibrium
statexr with itself, respectively. Herê•••&T stands for a
thermal average taken with the Gibbs probability distrib
tion:

W~x!5
1

Z
dS Q0N2(

i
bi xi D dS QN2(

i
~12bi !xi D

3exp@2bH~x!#. ~13!

To proceed further we assume that the saddle-point
rameters are symmetric under permutations of the rep
indices, i.e.,pr5p, p̂r5 p̂, qrd5q, q̂rd5q̂, R̂r5R̂, and
Q̂r5Q̂. With this prescription the evaluation of Eq.~9! is
straightforward, yielding the following replica-symmetr
free energy density

2b f 52
bqy

2
2bQ0R̂1a1alnS Q

a D
1

12a

2
lnS p

2b~2u2y! D1b~12a!
R̂21q

2~2u2y!

1~12a!E
2`

`

Dz ln erfcFAb~R̂1zAq!

A2~2u2y!
G , ~14!
05191
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where y5b(p2q) and Dz5dzexp(2z2/2)/A2p is the
Gaussian measure. Already at this stage we can see tha
concentration of species eliminated at the outset, given
the parameterQ, decouples from the other physical param
eters, and hence does not have any effect upon them. In
zero-temperature limit the saddle-point equations] f /]q

50, ] f /]y50, and] f /]R̂50 are given by

D52
Aq

Q0
~u2y!, ~15!

2y~2u2y!5~12a!erfc~2D/A2!, ~16!

and

~12a!D

A2p
exp~2D2/2!5~2u2y!22~2u2y!~D211!y.

~17!

We note that the parameter associated with the concentra
of surviving speciesQ0 appears only as a scale ofq, and so
henceforth we will setQ051 without loss of generality. In
the replica-symmetric framework the Edwards-Anderson
der parameterq is defined by

q5K 1

N (
i

^xi&T
2L . ~18!

If the concentrationsxi were normalized to 1 rather than toN
thenq would give the probability that two randomly selecte
individuals are of the same species, a quantity known
Simpson’s index@17#. Nevertheless, we can still give
simple physical interpretation toq. For instance, values ofq
of order of 1 indicate the coexistence of a macroscopic nu
ber of species~i.e., xi'1 for an extensive number of spe
cies!, while large values ofq signalize the dominance of
few species only~i.e., xi'N for a finite number of species!.
Of course, this interpretation is equivalent to that giv
above for Simpson’s index, and so we can view 1/q as a
measure of the diversity of the ecosystem. In Fig. 1
present 1/q as a function of the dilution parametera for
several values of the cooperation pressureu. The results of
the numerical solution of the replicator equation@Eq. ~4!# for
N5500 are also presented. Each data point is the ave
over 100 realizations of the matrix of coupling strength
starting with a uniform distribution of concentrations. Sin
the labeling of the species is arbitrary we can setbi50 for
i<aN and bi51 otherwise, without loss of generality. I
addition, we choosea such thataN is an integer for simplic-
ity. In agreement with our interpretation, fora close to 1 we
can observe the vanishing of 1/q, which characterizes an
ecosystem composed of a few species only. For small va
of u, the analytical results show the existence of a maxim
of diversity for a nonzero value of the dilution parameter~see
the inset in Fig. 1!; the numerical results, however, do n
corroborate this finding. This discrepancy can be explain
by the instability of the replica-symmetric solution. In fac
carrying out the standard local stability analysis@18#, we find
that this solution is locally stable wherever the condition
1-3
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l5211
12a

2~2u2y!2
erfcS 2

D

A2
D ,0 ~19!

is satisfied. Figure 2 shows the regions in the plane (a,u)
where the replica-symmetric solution is stable. In particu
we find that fora50 this solution is stable foru.1/A2,
while for a51 it is stable for allu. Hence the maxima ob
served in Fig. 1 are indeed artifacts of the replica-symme
framework. Nevertheless, the agreement between the ana
cal and numerical results is already excellent foru.0.6. The
rather puzzling independence of the diversity on the dilut
parameter for smallu has a simple explanation, as will b
seen in Sec. IV.

IV. DISCUSSION

Although the interpretation of the reciprocal of th
Edwards-Anderson order parameter as the ecosystem d

FIG. 1. The diversity 1/q as a funcion of the dilution paramete
a for ~top to bottom! u51.3 (s), 0.8 (,), 0.6 (L), 0.4 (h),
and 0.3~n!. The symbols are the results of the numerical solut
of the replicator equation. The inset highlights the region of
diversity maximum.

FIG. 2. Almeida-Thouless line separating the regions of stab
(l,0) and instability (l.0) of the replica-symmetric solution.
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sity yields some information on the distribution of species
equilibrium, a better understanding is achieved by calcu
ing explicitly the cumulative distribution that the concentr
tion of one of the (12a)N remaining species, sayxk , as-
sumes a value smaller thanx, defined by

Ck~x!5 lim
b→`

K E
0

`

)
j

dxjbkQ~x2xk!W~x!L , ~20!

whereQ(x)51 if x>0 and 0 otherwise, andW(x) is given
by Eq. ~13!. As all non-vanishing species concentrations a
equivalent, we can writeCk(x)5C(x);k. Hence to evaluate
Eq. ~20!, we introduce the auxiliary energy

Haux~x!5H~x!1h(
k

bkQ~x2xk!, ~21!

so that

C~x!52 lim
b→`

1

Nb

]^ ln Zaux&
]h U

h50

, ~22!

whereZaux is the partition function@Eq. ~6!# with H replaced
by Haux . Using Eq.~22! the calculations needed to evalua
C(x) become analogous to those used in the evaluation of
free-energy density@Eq. ~14!#. Carrying out the calculations
within the replica-symmetric framework we obtain

C~x!5~12a!H 12
1

2
erfcF 1

A2
S x~2u2y!

Aq
2D D G J ,

~23!

whereq, y, and D are given by the saddle-point equatio
~15!–~17!. In Fig. 3 we showC(x) for u50.8 and several
values ofa. The first point to note is that lim

x→`
C(x)51

2a yields fraction of surviving species at the outset, as
pected. In addition, the value ofC(0) yields the fraction of

e

y

FIG. 3. Cumulative distribution of the concentration of the in
tially surviving species in equilibrium foru50.8 and~top to bot-
tom! a50, 0.4, 0.6, and 0.8. The dashed curves are the result
the numerical solution of the replicator equation.
1-4
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species that survived the initial externally induced extinct
event but that were extinct later on due to outcompetition
the regime of large dilution, saya.0.8 in Fig. 3, the cumu-
lative distribution is very small, and is practically consta
for small concentrations, indicating that no further extin
tions have taken place and, furthermore, that rare specie
very unlikely to be found in the ecosystem at equilibriu
We note that the numerical simulations yield results pra
cally indistinguishable from the analytical ones. The rou
independence of the diversity 1/q on the dilution parametera
observed in Fig. 1 for smallu is easily understood with the
aid of the cumulated distributions. In fact, a direct meas
of the ecosystem diversity is given by the fraction of surv
ing species 12a2C(0), which is shown in Fig. 4 as a func
tion of a. @We recall thata is the fraction of species that wer
extinct at the outset due to some external stress, andC(0) is
the fraction that died out due to outcompetition.# The re-
markable similarity between these figures corroborates
interpretation of 1/q as a measure of the diversity. Clearl
the diversity is insensitive to variations ofa whenever the
fraction of extinct species in the undisturbed ecosystem@i.e.
C(0) calculated ata50# is already considerably larger tha
a, so that the species eliminated at the outset would prob
be extinct later on anyway.

V. CONCLUSION

Although the dynamics of the random replicator mod
may not look very appealing, in the sense that it always le

FIG. 4. Fraction of surviving species as a function of the di
tion parametera for ~top to bottom! u51.3 (s), 1.0(h), 0.8(,),
0.6 (L), and 0.3 (n). The symbols are the results of the numeric
solution of the replicator equation. The dashed line is the fractio
species at the beginning of the coevolutionary process.
.A
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to fixed points, the frustration caused by the competition
tween the concentration limiting self-interactions (u.0) and
the tendency to unlimited growth of pairs of strongly coo
erative (Ji j ,0) species results in a highly nontrivial equilib
rium, characterized by many metastable states@10# and a
phase of replica symmetry breaking@11#. Of course, these
very features make some aspects of the dynamics~e.g., slow
relaxation and hysteresis effects! nontrivial as well. The
wealth of ecologically relevant issues that can be addres
within this equilibrium framework can be appreciated, f
instance, in the case of high-order interactions among
species, where it has been reported the emergence
threshold value which gives a lower bound to the concen
tion of the surviving species, preventing then the existenc
rare ~low concentration! species in the ecosystem@13#.

An important outcome of the equilibrium analysis of th
random replicator model is the finding that in order to redu
the degree of frustration a fraction of the species dies
@10#. This type of extinction clearly has a biotic caus
namely, outcompetition@19#. In this paper we study how the
model ecosystem copes with abiotic or externally induc
extinction, in which a fraction of randomly chosen species
eliminated at the beginning of the coevolutionary proce
We find that in the regime of high competition~smallu) the
ecosystem diversity, i.e., the fraction of surviving species
practically insensitive to the strengtha of the initial extinc-
tion provided it is not too large, while in the less competiti
regime ~large u) the diversity decreases linearly with in
creasinga. In the case of a large extinction event we find th
no further ~biotic! extinctions take place and, furthermor
that rare species become very unlikely to be found in
ecosystem at equilibrium. This is distinct from the res
mentioned above for the case of high-order interactio
where the probability of finding rare species in the ecosys
is strictly null @13#. Finally, a by-product of our investigation
worth mentioning is the finding that the reciprocal of th
Edwards-Anderson order parameter~i.e., the replica-
symmetric overlap between two equilibrium states! serves as
an easy-to-calculate measure of the diversity of the mo
ecosystem.
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@16# M. Mézard, G. Parisi, and M. A. Virasoro,Spin Glass Theory
and Beyond~World Scientific, Singapore, 1987!.

@17# E.H. Simpson, Nature~London! 163, 688 ~1949!.
@18# J.R.L. Almeida and D.J. Thouless, J. Phys. A11, 983 ~1978!.
@19# J. Maynard Smith, Philos. Trans. R. Soc. London, Ser. B325,

241 ~1989!.
1-6


