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Extinctions in the random replicator model
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The statistical properties of an ecosystem composed of species interacting via pairwise, random interactions
and deterministic, concentration limiting self-interactions are studied analytically with tools of equilibrium
statistical mechanics of disordered systems. Emphasis is given to the effects of externally induced extinction of
a fixed fraction of species at the outset of the evolutionary process. The manner the ecosystem copes with the
initial extinction event depends on the degree of competition among the species as well as on the strength of
that event. For instance, in the regime of high competition the ecosystem diversity, given by the fraction of
surviving species, is practically insensitive to the strength of the initial extinction provided it is not too large,
while in the less competitive regime the diversity decreases linearly with the size of the event. In the case of
large extinction events we find that no further biotic extinctions take place and, furthermore, that rare species
become very unlikely to be found in the ecosystem at equilibrium. In addition, we show that the reciprocal of
the Edwards-Anderson order parameter yields a good measure of the diversity of the model ecosystem.
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I. INTRODUCTION Although we recognize that evolution and hence extinc-
tion are, as pictured by the models mentioned above, essen-
Extinction seems to be the final outcome of the evolutiontially dynamical phenomena, in this work we study these
of species. In fact, as species survive about 10 million yearphenomena within the equilibrium statistical mechanics
in the average, nearly all species that have ever existed afeamework of the random replicator model for species coevo-
extinct, and only a very small fraction of them have left theirlution [10-13. Deterministic replicator models are com-
impressions in the fossil recofd,2]. The causes of mass monly used to describe the evolution of self-reproducing en-
extinction events is currently a matter of dispute, as there argties in a variety of fields such as game theory, prebiotic
two main types of explanation8]. The more traditional one evolution, and sociobiolog§14,15. The random replicator
asserts that extinction is caused by external stresses such ggodel introduced by Diederich and Opgé0] attempted to
for instance, major climate changes and asteroids impactgaodel the uncertainties and the overwhelming complexity of
This point of view is supported by some evidence, such aghe interspecies interactions in biological ecosystems, by as-
the unusual quantity of iridium and other noble metals in thesuming that those interactions are random. However, it was
rocks that marked the boundary between the Cretaceous anfl, sssumed that the dynamics is such that a fitness func-
Tertiary periods, when the era of the dinosaurs was replacegh,,,| (| yapunov functiop is maximized so that the only
by the era of the mammalg]. Since iridium is more com- stationary states are fixed points. In fact, the existence of

mon in aster0|_ds than in the Earth S crust, this finding can.b uch a functional leads to a replicator equation with symmet-
viewed as evidence of an asteroid impact. An alternative. . o . S
interspecies interactiof4.5], which is a severe assump-

explanation asserts that extinctions are caused by interactiohs . . . .
between species in the ecosystems. In particular, H&he tion from the biological stan_dpplnt. Hoyvgver, It aIIow; the
showed that species richness can sometimes be increasedfﬂﬂ use of the tools of eqy|llbr|um stat|§t.|c§1I mechanics to'
a predator-mediated coexistence, and the removal of predStUdy the average properties of the equilibrium states of this
tors can lead to additional species extinctions. Some recekind of disordered ecosystems analytically. _
studies indicated that food webs with many species or high An interesting result of the random replicator model is
connectivity are more likely to lose species as a consequendBat in the equilibrium state a fraction of the species is ex-
of the extinction of a single species when compared witHinct [10]. The mechanism of extinction is clearly outcompe-
more simple food web§6,7]. Although this kind of argu- tition and, in the absence of any cooperation pressure, only a
ment seems well suited to explain so-called background expair of species with the largest reinforcing interactions will
tinctions, it certainly needs some new ingredients to explairihrive. In this paper we study the effects of random elimina-
mass extinctions as well. In fact, the missing ingredientiion of a fixed fraction of the species at the outset of the
seems to be the self-organized criticality conde}jt which  evolutionary process, placing emphasis on the distribution of
in this context is best illustrated by the popular Bak-Sneppeithe remaining species concentrations in the equilibrium state.
model[9]. According to this model, the fitness of each spe-There are several interesting issues that can be addressed in
cies is affected by the other species to which it is coupled irthis framework. For instance, what is the equilibrium situa-
the ecosystem, so that large events in the evolutionary higion when the fraction of species eliminated at the beginning
tory may be thought of as large coevolutionary avalanches already larger than the fraction that would be extinct natu-
caused by the intrinsic dynamics of the model. In this modelrally due to outcompetition? Furthermore, how does the eco-
the distribution of the extinction sizes follows a power law, system cope with large initial extinction events? In this paper
which is a valid candidate for fitting to the experimental data.we give clearcut analytical answers to these questions which
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are partly corroborated by numerical simulations of theviduals of a same species compete against themselves, which
model ecosystem. is quite reasonable as they certainly share the same resources
The remainder of the paper is organized as follows. In(ecological nichg
Sec. Il we introduce the model, and discuss the ecological The time evolution of the species concentrations is given
interpretation of the control parameters. The equilibriumby the replicator equation
properties of the model are derived within the replica-
symmetric framework in Sec. lll, and the use of the recipro-
cal of the Edwards-Anderson order parameter as a measure %_ _ IH(X) _ i JHX) | .
N Ek Xk X Vi, (4)

for the diversity of the ecosystem is suggested. In Sec. IV we dt Xi X
calculate the cumulative distribution of the concentrations of

a given species, thus allowing the explicit calculation of the L ) )
ecosystem diversity as the fraction of surviving species aythich minimizesH(x) while keeping the ternk;b;x; con-

equilibrium. Finally, in Sec. V we present some concludingStant during the evolution. Hence the fixed points of this
remarks. equation are the minima d%(x), and in the following we

use the replica formalism to study the statistical properties of
Il. MODEL these minima analytically.
We consider an infinite populatiqecosysterhcomposed
of individuals belonging tdN different species, whose fitness lll. REPLICA APPROACH
Fi (i=1,...N) are the derivativesr;=dF/dx; of the fit-

Hess functionalr defined as Following the standard prescription of performing

guenched averages on extensive quantities @8y, we de-
fine the average free-energy denditys

—F=H(¥)=uX, bpx?+ >, J; bxibx;, 1)
i i<j

1
where x; e[0) is the fraction of species, and b; is a —Bt=1lim 5(InZ), ©)
guenched random variable that takes the values 0 and 1 with N=e
probabilitiesa and 1—a, respectively. Henc&la randomly
chosen species are eliminated at the outset in the averaggpere
and so henceforth we will refer tae[0,1] as the dilution
parameter. An effective competition among the species is

enforced by requiring that the concentrations of the surviving _ [~
species satisfy the constraint Z= 0 H dx; & QON_Z biX; QN_Z Xi(1=by)

N —BH(X) 6
S, bixi=QoN. @ e ©

. . " . . is the partition function angg=1/T is the inverse tempera-
where Qg is an arbitrary positive constant which gives theture. Taking the limitT—0 in Eq. (6) ensures that only the

scale of the concentrationg. The coupling strengthdy states that minimizé{(x) will contribute toZ. We impose
between species and | are statistically independent the additional constraint

guenched random variables with a Gaussian distribution,

N Ji)?N
P(Jij) = \/ﬁex;{— ( '2)

so thatJ;;<<0 corresponds to pairs of cooperating species

while J;;>0 to pairs of competing species. As far as theto avoid divergences when carrying out the integrals ayer
ground-state properties @f are concerned, the actual value Here(- - -) stands for the average over the coupling strengths
of the variance of thd;; is irrelevant, provided it will vanish  J;; as well as over the auxiliary variables. As usual, the
as 1N for large N, and so we have fixed it to N/without  evaluation of the quenched average in E5).can be carried
loss of generality. In doing so, we are implicitly assumingout through the replica method: using the identity

thatH is a dimensionless effective Hamiltonian, and so is the

self-interaction parameter=0. This parameter acts as a glo-

bal cooperation pressure, limiting the growth of any single (InZ)= Iian(Z“) @)
species, and it is crucial to guarantee the existence of a non- noh ’

trivial thermodynamic limit,N—<. In fact, for largeu the

minimum of H corresponds to a homogeneous ecosystem

where the surviving species have concentrationtQ, we first calculatg/Z") for integer n i.e., Z"=11"_,Z", and

p
=1/(1-a)Vi. The positive self-interactions mean that indi- then analytically continue ta=0. The final result is

; 3 > x(1-b)=QN @)
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_ 1 R Bu B2 , where y=8(p—q) and Dz=dzexp(—Z/2)/\2x is the
—Bf=1lim extrﬁ > pPpP— > > p’”rz > (p”) Gaussian measure. Already at this stage we can see that the
n—0 P P P concentration of species eliminated at the outset, given by

B2 the paramete@, decouples from the other physical param-
+ g7+ >, QOP+ = > (gr9)? eters, and hence does not have any effect upon them. In the
p<o p 2 5% zero-temperature limit the saddle-point equatiof§ dq
R o =0, of/ay=0, anddf/dR=0 are given by
+2 QR+ X Pyln Go(b,p",q”,R",Qp)}, &
b b=0 q
A=2—(u—y), 15
9 Qo( Y) {13
wherePo=a, P;=1-a, and 2y(2u—y)=(1—-a)erfo — A/ 2), (16)
o - R and
Go=| II dx exp[—bz pP(x?)2—b > g°xx°
0 »p P p<é (1_ a)A
———exp —A%2)=(2u—y)2— (2u—y)(A%+1)y.
—b> Rx—(1-b) D (gpxp]. (10) vem 1
P p

We note that while we have calculated the average over thWe note that the parameter associated with the concentration
couplings J;; explicitly, we have used the self-averaging of surviving specie, appears only as a scale gfand so

property (1IN)=; INGy(b)=3,P,In Gy(b) to eliminate the hencefqrth we will s_eQO=1 without loss of generality. In
site dependence of thie variables. The relevant physical the replica-symmetric framework the Edwards-Anderson or-
order parameters are der parameteq is defined by

1
wi=g 3 o0, p<a D o=(§ 3 F) 19

If the concentrationg; were normalized to 1 rather thanlb
p_i 2 "2 12 thenq would give the probability that two randomly selected
P N5 (Sl (12 individuals are of the same species, a quantity known as
Simpson’s index[17]. Nevertheless, we can still give a
which measure the overlap between a pair of different equisimple physical interpretation g For instance, values af
librium statesx” andx?, and the overlap of an equilibrium ©f order of 1 indicate the coexistence of a macroscopic num-
statex? with itself, respectively. Herg- - -); stands for a ber of speciegi.e., x;~1 for an extensive number of spe-

thermal average taken with the Gibbs probability distribu-Cies, while large values ofj signalize the dominance of a
tion: few species onlyi.e., x;~N for a finite number of specigs

Of course, this interpretation is equivalent to that given

1 above for Simpson’s index, and so we can view &5 a

WX) = > 5( QoN-2> by Xi>5<QN_Z (1=by)x; measure of the diversity of the ecosystem. In Fig. 1 we
' ' present 1d as a function of the dilution parameter for
xexd — BH(X)]. (13)  several values of the cooperation pressur&he results of

the numerical solution of the replicator equat{é. (4)] for
To proceed further we assume that the saddle-point paN=500 are also presented. Each data point is the average
rameters are symmetric under permutations of the replicaver 100 realizations of the matrix of coupling strengths,
indices, i.e.,p’=p, p’=p, 9”°=q, g*°=q, R’=R, and Starting with a uniform distribution of concentrations. Since
AP=0. With this prescription the evaluation of E(9) is the labeling of the species is arbitrary we canlget0 for

straightforward, yielding the following replica-symmetric |$qN andb;=1 otherwise, W|th9ut IO.SS of gener.ahty.. In
free energy density addition, we choosa such tha@aN is an integer for simplic-

ity. In agreement with our interpretation, farclose to 1 we
Bqy . Q can observe the vanishing ofql/which characterizes an
—Bf=— - —BQyR+a+aln E) ecosystem composed of a few species only. For small values
of u, the analytical results show the existence of a maximum
of diversity for a nonzero value of the dilution paramesae

— 2
+ ! a|n 7 +pB(1—a) R™+q the inset in Fig. ]; the numerical results, however, do not
2 2p(2u—y) 2(2u—y) corroborate this finding. This discrepancy can be explained
. - by the instability of the replica-symmetric solution. In fact,
+(1- a)J DzIn erf M , (14)  carrying out the standard local stability analysi8], we find
—oo V2(2u—y) that this solution is locally stable wherever the condition
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FIG. 3. Cumulative distribution of the concentration of the ini-
tially surviving species in equilibrium fou=0.8 and(top to bot-

a for (top to bottom u=1.3 (O), 0.8 (V), 0.6 (¢), 0.4 [O), a
and 0.3(A). The symbols are the results of the numerical solutiont©™ @=0, 0.4, 0.6, and 0.8. The dashed curves are the results of
the numerical solution of the replicator equation.

of the replicator equation. The inset highlights the region of the
diversity maximum.

FIG. 1. The diversity If as a funcion of the dilution parameter

sity yields some information on the distribution of species at

1-a A equilibrium, a better understanding is achieved by calculat-
AN=—-1+ —zerfc( - —) <0 (190  ing explicitly the cumulative distribution that the concentra-
2(2u-y) V2 tion of one of the (+a)N remaining species, sa, as-

is satisfied. Figure 2 shows the regions in the plaagi) sumes a value smaller thandefined by

where the replica-symmetric solution is stable. In particular, o
we find that fora=0 this solution is stable fou>1/2, C(x)=lim <f H dxb® (X—=x)M(x) ),  (20)
while for a=1 it is stable for allu. Hence the maxima ob- AR

served in Fig. 1 are indeed artifacts of the replica-symmetry
framework. Nevertheless, the agreement between the analyti
cal and numerical results is already excellentdor0.6. The
rather puzzling independence of the diversity on the dilutio
parameter for smalll has a simple explanation, as will be
seen in Sec. IV.

vhere® (x)=1 if x=0 and 0 otherwise, an®/(x) is given

y Eq.(13). As all non-vanishing species concentrations are
rgquivalent, we can writ€,(x) =C(x) VK. Hence to evaluate
Eqg. (20), we introduce the auxiliary energy

HawX)=H(0)+h> b® (X=X, (21)
IV. DISCUSSION k
Although the interpretation of the reciprocal of the SO that
Edwards-Anderson order parameter as the ecosystem diver-
o0 — i 1 HInZuuw -
08 : — : : (X)——Blinx NG~ oh - (22

whereZ,, is the partition functiodEq. (6)] with H replaced

06 k<0 . by Haux- Using Eq.(22) the calculations needed to evaluate
C(x) become analogous to those used in the evaluation of the
free-energy densitjEq. (14)]. Carrying out the calculations

B 041 - within the replica-symmetric framework we obtain
i A ¢ 1 1 1 ‘ 1 [x(2u—y) A
> x)=(1l-a)j1l—-zerfd = ——=——— ,
wal A>0 | (x)=(1-a) > N 7
(23
o , | , | , | , | , whereq, y, and A are given by the saddle-point equations
0 02 04 0.6 038 1 (15—(17). In Fig. 3 we showC(x) for u=0.8 and several
a values ofa. The first point to note is that Ii)r(rlooC(x)zl

FIG. 2. Almeida-Thouless line separating the regions of stability—a Yields fraction of surviving species at the outset, as ex-
(A<0) and instability §>0) of the replica-symmetric solution. ~ pected. In addition, the value ¢{0) yields the fraction of
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e - T - T - T - to fixed points, the frustration caused by the competition be-
AN . 1 tween the concentration limiting self-interactions0) and
N the tendency to unlimited growth of pairs of strongly coop-
erative J;;<0) species results in a highly nontrivial equilib-
rium, characterized by many metastable stdtdy and a
0.6 . phase of replica symmetry breakin@l]. Of course, these
L | very features make some aspects of the dynafeics, slow
sl | relaxation and hysteresis effectaontrivial as well. The
5 wealth of ecologically relevant issues that can be addressed
1 within this equilibrium framework can be appreciated, for
02 . instance, in the case of high-order interactions among the
& A A A A A A A _a | species, where it has been reported the emergence of a
. . . . . threshold value which gives a lower bound to the concentra-
0 02 0.4 0.6 08 1 tion of the surviving species, preventing then the existence of
a rare (low concentrationpspecies in the ecosysteh3].

FIG. 4. Fraction of surviving species as a function of the dilu- An |mp0rFant outcome. of the_ eq.“"'b““”f‘ analysis of the
tion parametea for (top to bottom u=1.3 (O), 1.0), 0.8(V), random replicator mOQeI is the flndlng that in ordgr to reduce
0.6 (¢), and 0.3 (A). The symbols are the results of the numerical the degree of frustration a fraction of the species dies out
solution of the replicator equation. The dashed line is the fraction of 10]. This type of extinction clearly has a biotic cause,
species at the beginning of the coevolutionary process. namely, outcompetitiof19]. In this paper we study how the

model ecosystem copes with abiotic or externally induced
species that survived the initial externally induced extinctionextinction, in which a fraction of randomly chosen species is
event but that were extinct later on due to outcompetition. Ireliminated at the beginning of the coevolutionary process.
the regime of large dilution, sag>0.8 in Fig. 3, the cumu- We find that in the regime of high competiti¢gsmallu) the
lative distribution is very small, and is practically constantecosystem diversity, i.e., the fraction of surviving species, is
for small concentrations, indicating that no further extinc-practica”y insensitive to the strengthof the initial extinc-
tions have taken place and, furthermore, that rare species &jign provided it is not too large, while in the less competitive
very unlikely to be found in the ecosystem at equilibrium. regime (large u) the diversity decreases linearly with in-
We note that the numerical simulations yield results prac“'creasinga. In the case of a large extinction event we find that
cally indistinguishable from the analytical ones. The roughno further (biotic) extinctions take place and, furthermore,
independence of the diversitydlon the dilution parametex that rare species become very unlikely to be found in the

observed in Fig. 1 for §mglj IS easily understo_od with the ecosystem at equilibrium. This is distinct from the result
aid of the cumulated distributions. In fact, a direct measure

of the ecosystem diversity is given by the fraction of surviv-mentloned above__for the case of hlgh-or_der Interactions
ing species + a—C(0), which is shown in Fig. 4 as a func- where the probability of finding rare species in the ecosystem
tion of a. [We recall théta is the fraction of speéies that were Is strictly nu.II [1.3]' Einally, a by-product of our ?nvestigation
extinct at the outset due to some external stress 40yl is worth mentioning is the finding that t_he reciprocal .Of the
the fraction that died out due to outcompetitipithe re- Edwards-Anderson order parametdf.e., the replica-

markable similarity between these figures corroborates 0u§)r/1mmetr_|tc f)velrlalp tbetr\rgveen trWO ﬁﬁ'“bdr;\ljn: ?ttate?%es rarl15 gel
interpretation of 1g as a measure of the diversity. Clearly, an easy-to-caiculate measure of the diversity ot the mode

the diversity is insensitive to variations af whenever the ecosystem.

fraction of extinct species in the undisturbed ecosydfieen

C(0) calculated aa=0] is already considerably larger than

a, so that the species eliminated at the outset would probably ACKNOWLEDGMENTS
be extinct later on anyway.
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